Site Preparation and Installation Manual

Agilent 6890 Series Gas Chromatograph ©Agilent Technologies 2000

All Rights Reserved. Reproduction, adaptation, or translation without permission is prohibited, except as allowed under the copyright laws.

Part No. G1530-90307

First edition, Jan 2000

Printed in USA

Replaces Part No. G1530-90305 Site Preparation and Installation Manual

HP® is a registered trademark of Hewlett-Packard Co.

Microsoft® , Windows® , and Windows NT® are registered trademarks of Microsoft Corp.

Safety information

The 6890 Gas Chromatograph meets the following IEC (International Electrotechnical Commission) classifications: Safety Class 1, Transient Overvoltage Category II, and Pollution Degree 2.

This unit has been designed and tested in accordance with recognized safety standards and designed for use indoors. If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired. Whenever the safety protection of the 6890 has been compromised, disconnect the unit from all power sources and secure the unit against unintended operation.

Refer servicing to qualified service personnel. Substituting parts or performing any unauthorized modification to the instrument may result in a safety hazard. Disconnect the AC power cord before removing covers. The customer should not attempt to replace the battery or fuses in this instrument. The battery contained in this instrument is recyclable.

Safety symbols

Warnings in the manual or on the instrument must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions violates safety standards of design and the intended use of the instrument. Agilent Technologies assumes

no liability for the customer's

failure to comply with these

requirements.

WARNING

A warning calls attention to a condition or possible situation that could cause injury to the user

CAUTION

A caution calls attention to a condition or possible situation that could damage or destroy the product or the user's work.

See accompanying instructions for more information.

Indicates a hot surface.

Indicates hazardous voltages.

Indicates earth (ground) terminal.

Indicates radio-active hazard.

Indicates explosion hazard.

Electromagnetic compatibility

This device complies with the requirements of CISPR 11. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try one or more of the following measures:

- 1. Relocate the radio or antenna.
- 2. Move the device away from the radio or television.
- Plug the device into a different electrical outlet, so that the device and the radio or television are on separate electrical circuits.

- Make sure that all peripheral devices are also certified.
- 5. Make sure that appropriate cables are used to connect the device to peripheral equipment.
- Consult your equipment dealer, Agilent Technologies, or an experienced technician for assistance.
- Changes or modifications not expressly approved by Agilent Technologies could void the user's authority to operate the equipment.

Sound Emission Certification for Federal Republic of Germany

Sound pressure Lp < 65 dB(A) During normal operation At the operator position According to ISO 7779 (Type Test)

When operating the 6890 with cryo valve option, the sound pressure 74.6 dB(A) during cryo valve operation for short burst pulses.

Schallemission

Schalldruckpegel LP < 65 dB(A) Am Arbeitsplatz Normaler Betrieb Nach DIN 45635 T. 19 (Typprüfung)

Bei Betrieb des 6890 mit Cryo Ventil Option treten beim Oeffnen des Ventils impulsfoermig Schalldrucke Lp bis ca. 74.6 dB(A) auf.

Contents

Chapter 1. Site Preparation

Temperature and humidity ranges	3
Ventilation requirements	3
Venting oven exhaust	4
Venting toxic or noxious gases	4
Benchtop space requirements	4
Electrical requirements	8
Grounding	8
Line voltage	8
USA fast heating oven	10
Canadian installation	11
Configuring the GC for an MSD	11
Gas requirements	11
Gases for packed columns	11
Gases for capillary columns	12
Gas purity	13
The gas plumbing	14
Supply tubing for carrier and detector gases	16
Two-stage pressure regulators	16
Pressure regulator-gas supply tubing connections	17
Traps	17
Cryogenic cooling requirements	18
Choosing a coolant	19
Using carbon dioxide	
Using liquid nitrogen	
Supplying valve actuator air	22

Chapter 2. Installation

Step 1. Unpacking the GC	28
Step 2. Placing the GC system on the benchtop	29
Step 3. Turning the power on	30
Step 4. Connecting tubing to the gas supply tank	31
Step 5. Attaching traps to the gas supply tubing	32
Step 6. Attaching a SWAGELOK™ Tee to tubing	
Step 7. Attaching tubing to the inlet manifold	
Step 8. Attaching tubing to detector manifolds	35
6890 with Electronic Pressure Control	35
6890 with Manual Pressure Control	36
Step 9. Checking for leaks	38
Step 10. Attaching cryogenic liquid supplies	39
Attaching liquid carbon dioxide	
Attaching liquid nitrogen	
Step 11. Attaching valve actuator air	
Step 12. Setting source pressures	
Step 13. Connecting cables	45
Cable diagrams	52
Analog cable, general use	52
Remote start/stop cable	53
Binary-coded decimal cable	54
External event cable	55
Step 14. Setting the 7673 Automatic Liquid Sampler switches	56
Step 15. Configuring the GC	57
Configuring for the Agilent GPIB ChemStation	
Configuring for the INET integrator	58
Using the GC with a LAN	58
Appendix Making SWAGELOK Connections	59
Indov	63

Temperature and humidity ranges	3
Ventilation requirements	3
Venting oven exhaust	
Venting toxic or noxious gases	
Benchtop space requirements	
Electrical requirements	
Grounding	8
Line voltage	
USA fast heating oven	
Canadian installation	
Configuring the GC for an MSD	11
Gas requirements	
Gases for packed columns	
Gases for capillary columns	12
Gas purity	
The gas plumbing	
Supply tubing for carrier and detector gases	
Two-stage pressure regulators	
Pressure regulator-gas supply tubing connections	
Traps	
Cryogenic cooling requirements	
Choosing a coolant	
Using carbon dioxide	
Using liquid nitrogen	
Supplying valve actuator air	

Site Preparation

How to prepare your laboratory for installation and use of the GC.

Site preparation at a glance

Before the GC arrives, make sure your laboratory meets the following environmental, weight, power, and gas requirements. You should also refer to this checklist for supplies that you need to operate your GC, such as traps and tubing. You can find more site preparation information in this chapter.

Site Preparation Checklist

J	The site is well ventilated and free of corrosive materials and overhanging obstacles.
J	Site temperature is within the recommended range of 20 to 27°C.
J	Site humidity is within the recommended range of 50 to 60%.
7	Bench space is adequate for the GC with EPC: 50 cm x 58.5 cm x 50 cm (21 inch x 23 inch x 21 inch). Bench space is adequate for the GC without EPC: 50 cm x 68 cm x 50 cm (21 inch x 26.7 inch x 21 inch).
J	Bench can support the weight of the 6890 system. See page 7.
J	Power receptacle is earth grounded. See page 8.
J	Electrical supply meets all GC's power requirements. See page 8.
J	Voltage supply is adequate for oven type. Regular oven: 2,250 VA. Fast-heating oven: 2,950 VA.
J	Gas supplies meet the requirements of your columns and detectors. See page 11.
J	Gases meet purity requirements. All should be chromatographic-grade—99.9995% pure or better. Air should be zero grade or better. Detector air is not shared with valve actuators.
J	Precleaned, 1/8-inch (or 1/4-inch) copper tubing is available for connecting inlet and detector gas supplies. See page 16
J	Inlet and detector gas supplies have two-stage pressure regulators installed.
Op	tional supplies:
J	High quality traps for inlet and detector gas supplies—molecular sieve trap, hydrocarbon trap, and/or oxygen trap.
7	Liquid ${ m N}_2$ or liquid ${ m CO}_2$ (depending on requirements) available for cryogenic cooling.
J	Supply of 1/4-inch, insulated copper tubing is available for liquid N_2 supplies, OR 1/8-inch, heavy-walled, stainless steel tubing is available for liquid CO_2 supplies.
J	Insulation for liquid N_2 tubing is available.
J	Pressurized clean air is available for value actuators. See page 22.

Site Preparation

Site preparation involves two general steps: insuring that your laboratory is capable of supporting the operation of the GC and obtaining supplies and tools you will need to install the instrument. A list of the necessary tools and supplies appears at the beginning of the "Installation" chapter. Most supplies are available from Agilent Technologies. See the Agilent catalog for consumables and supplies for descriptions and ordering information. You can obtain a copy of the catalog from your local sales office.

Temperature and humidity ranges

Operating the GC within the recommended ranges insures optimum instrument performance and lifetime.

Recommended temperature range	Temperature range
20 to 27°C	5 to 40°C
Recommended humidity range	Humidity range
50 to 60%	Up to 31°C, 5 to 80%
	At 40°C, 5 to 50%
Recommended altitude range	
Up to 2000 m	

After exposing the GC to extremes of temperature or humidity, allow 15 minutes for it to return to the recommended ranges.

Ventilation requirements

The GC is cooled by convection: air enters vents in the side panels and underneath the instrument. Warmed air exits through slots in the top, rear, and side panels. Do not obstruct air flow around the instrument.

Caution

For proper cooling and general safety, always operate the instrument with cover panels properly installed.

Venting oven exhaust

Hot air (up to 450°C) from the oven exits through a vent in the rear. Allow at least 20 cm (10 inch) clearance behind the instrument to dissipate this air.

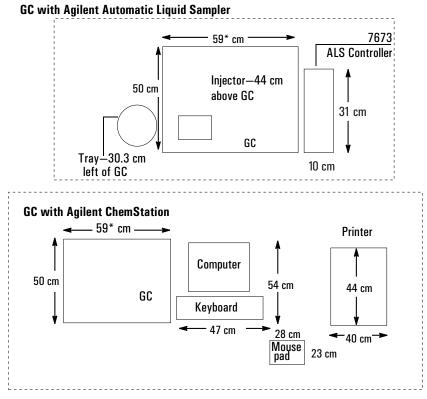
WARNING

Do not place temperature-sensitive items (for example, gas cylinders, chemicals, regulators, and plastic tubing) in the path of the heated exhaust. These items will be damaged and plastic tubing will melt. Be careful when working behind the instrument during cool-down cycles to avoid burns from the hot exhaust.

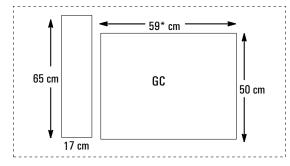
If space is limited, the Oven Exhaust Deflector (part no. 19247-60510) may improve oven cooling. It diverts exhaust air up and away from the instrument. You can connect it to a 10.2-cm (4-inch) exhaust-duct system, route the exhaust to a fume hood, or vent the exhaust outside the building with 10.2-cm diameter (4-inch diameter) furnace duct.

Venting toxic or noxious gases

During normal operation of the GC with many detectors and inlets, some of the carrier gas and sample vents outside the instrument. If any sample components are toxic or noxious, or if hydrogen is used as the carrier gas, the exhaust must be vented to a fume hood. Place the GC in the hood or attach a large diameter venting tube to the outlet for proper ventilation.


To further prevent contamination from noxious gases, you can attach a chemical trap (part no. G1544-60610) to the split vent.

Benchtop space requirements


The GC with electronic pneumatics control (EPC) is 59 cm (23 inch) wide. The nonEPC model is 68 cm (26.7 inch) wide. Both are 50 cm (21 inch) high and 50 cm (21 inch) deep.

The area above the GC should be clear, with no shelves or overhanging obstructions that limit access to the top of the instrument and interfere with cooling. You may need additional space for other instruments used with your GC. Figure 1 shows some common system configurations.

Table 1 presents the dimensions, power requirements, heat production, and weight of the GC and other Agilent instruments often used with it. Use this table to insure that you have adequate space and power for the entire system. Allow at least $10.2~{\rm cm}$ (4 inch) space between instruments for ventilation. See Table 2 and Table 3 for GC voltage requirements.

GC with 5972A Mass Selective Detector

^{*68} cm for non-EPC version.

Figure 1. Common GC system configurations—top views

Table 1. Dimensions, Power, Heat Production, and Weight

Height	Width	Depth	Power (VA)	Heat	Weight
54 cm 21 inch	59 cm 23 inch	54 cm 21 inch	2,250	8,100 KJoules 7,681 Btu/hr	50 kg 112 lb
51 cm 21 inch	68 cm 26.7 inch	54 cm 21 inch	2,250	8,100 KJoules 7,681 Btu/hr	56.8 kg 125 lb
_	_	_	2,950	10,620 KJoules 10,071 Btu/hr	_
10 cm 4 inch	33 cm 13 inch	38 cm 15 inch	320 max	545 KJoules 515 Btu/Hr	7.3 kg 16.0 lb
54 cm 21 inch	42 cm 17 inch	39 cm 15 inch	N/A	N/A	N/A
5 cm 2 inch	47 cm 18 inch	18 cm 7 inch	N/A	N/A	N/A
35 cm 13.6 inch	17 cm 6.7 inch	65 cm 25.6 inch	254 max	3,158 Btu/hr, 3,000 with GC	22.7 kg 50.0 lb
31 cm 16 inch	56 cm 22 inch	39 cm 22 inch	420 max	2,215 KJoules 2,100 Btu/hr	35.8 kg 79.0 lb
30 cm 11.7 inch	42 cm 16.4 inch	40 cm 15.9 inch	300 max	N/A	16.8 kg 37.0 lb
13 cm 4.5 inch	46 cm 18 inch	46 cm 18 inch	50	135 KJoules 120 Btu/hr	4.3 kg 9.5 lb
11 cm	33 cm	29 cm	40	216 KJoules	4.1 kg
	54 cm 21 inch 51 cm 21 inch - 10 cm 4 inch 44 cm abov 17 inch abo 30.3 cm lef 9 inch left of 54 cm 21 inch 5 cm 2 inch 35 cm 13.6 inch 31 cm 16 inch 30 cm 11.7 inch	54 cm 59 cm 21 inch 23 inch 51 cm 68 cm 21 inch 26.7 inch — — 10 cm 33 cm 4 inch 13 inch 44 cm above GC 17 inch above GC 30.3 cm left of GC 9 inch left of GC 54 cm 42 cm 21 inch 17 inch 5 cm 47 cm 2 inch 18 inch 35 cm 17 cm 13.6 inch 6.7 inch 31 cm 56 cm 16 inch 22 inch 30 cm 42 cm 11.7 inch 16.4 inch	54 cm 59 cm 54 cm 21 inch 23 inch 21 inch 51 cm 68 cm 54 cm 21 inch 26.7 inch 21 inch 10 cm 33 cm 38 cm 4 inch 13 inch 15 inch 44 cm above GC 17 inch above GC 30.3 cm left of GC 9 inch left of GC 9 inch left of GC 54 cm 42 cm 39 cm 21 inch 17 inch 15 inch 5 cm 47 cm 18 cm 2 inch 18 inch 7 inch 35 cm 17 cm 65 cm 13.6 inch 6.7 inch 25.6 inch 31 cm 56 cm 39 cm 16 inch 22 inch 22 inch 30 cm 42 cm 39 cm 16 inch 22 inch 25.6 inch 31 cm 56 cm 39 cm 16 inch 22 inch 25 inch	54 cm 59 cm 54 cm 2,250 21 inch 23 inch 21 inch 2,250 51 cm 68 cm 54 cm 2,250 21 inch 26.7 inch 21 inch 2,950 10 cm 33 cm 38 cm 320 max 4 inch 13 inch 15 inch 320 max 44 cm above GC 30.3 cm left of GC 39 cm N/A 30.3 cm left of GC 9 inch left of GC N/A N/A 21 inch 17 inch 15 inch N/A 5 cm 47 cm 18 cm N/A 2 inch 18 inch 7 inch 254 max 13 cm 56 cm 39 cm 420 max 13 cm 56 cm 39 cm 420 max 16 inch 22 inch 22 inch 30 cm 42 cm 40 cm 300 max 11.7 inch 16.4 inch 15.9 inch	54 cm 59 cm 54 cm 2,250 8,100 KJoules 21 inch 23 inch 21 inch 7,681 Btu/hr 51 cm 68 cm 54 cm 2,250 8,100 KJoules 21 inch 26.7 inch 21 inch 7,681 Btu/hr - - - 2,950 10,620 KJoules 10 cm 33 cm 38 cm 320 max 545 KJoules 4 inch 13 inch 15 inch 515 Btu/Hr 44 cm above GC 30.3 cm left of GC 9 inch left of GC 54 cm 42 cm 39 cm N/A N/A 21 inch 17 inch 15 inch N/A N/A 5 cm 47 cm 18 cm N/A N/A 35 cm 17 cm 65 cm 254 max 3,158 Btu/hr, 13.6 inch 6.7 inch 25.6 inch 3,000 with GC 31 cm 56 cm 39 cm 420 max 2,215 KJoules 16 inch 22 inch 22 inch 300 max N/A 11.7 inch

Electrical requirements

Grounding

Caution

A proper earth ground is required for GC operations.

To protect users, the metal instrument panels and cabinet are grounded through the three-conductor power line cord in accordance with International Electrotechnical Commission (IEC) requirements.

The three-conductor power line cord, when plugged into a properly grounded receptacle, grounds the instrument and minimizes shock hazard. A properly grounded receptacle is one that is connected to a suitable earth ground. Proper receptacle grounding should be verified.

Make sure the GC is connected to a dedicated receptacle. Use of a dedicator receptacle reduces interference.

Caution

Any interruption of the grounding conductor or disconnection of the power cord could cause a shock that could result in personal injury.

Line voltage

The GC operates from one of the AC voltage supplies listed in Table 2, depending on the standard voltage of the country from which it was ordered. GCs are designed to work with a specific voltage; make sure your GC voltage option is appropriate for your lab. The voltage requirements for your GC are printed near the power cord attachment.

Table 2. Line Voltage Requirements

Voltage	Maximum power consumption (VA)	Power line requirement	Oven type
120 V (±5%)	2,250	20-amp dedicated	Slow-heating
200 V (±5%)	2,950	15-amp dedicated	Fast-heating
220 V (±5%)	2,950	15-amp dedicated	Fast-heating
230 V (±5%)	2,950	16-amp dedicated	Fast-heating
230 V (±5%)	2,250	10-amp dedicated	Slow-heating
(Switzerland or Den maximum service)	mark with 10-amp		
240 V (\pm 5%)	2,950	13- or 16-amp dedicated	Fast-heating

Frequency range for all voltages is 48 to 66 Hz.

The fast-heating oven requires at least 200 V. Most countries' standard voltage meets this requirement. GCs for use in the USA, Denmark, and Switzerland will be equipped with a slow-heating oven unless they are ordered with power option 002, which specifies a fast-heating oven.

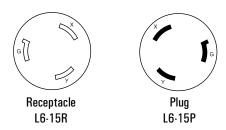

Although your GC should arrive ready for operation in your country, compare its voltage requirements with those listed in Table 3. If the voltage option you ordered is not suitable for your installation, contact Agilent Technologies.

Table 3. Voltage Requirements by Country

Country	Voltage	Oven type
Australia, 10 amp	240 V	Slow-heating
Australia, India, South Africa	240 V	Fast-heating
China	220 V	Slow-heating
China, Hong Kong	220 V	Fast-heating
Continental Europe, dual phase	230 V	Fast-heating
Continental Europe, single phase	220 V	Fast-heating
Denmark, Switzerland, 10 amp	230 V	Slow-heating
Denmark, Switzerland, 16 amp	230 V	Fast-heating
Israel	220 V	Fast-heating
Japan	200 V	Fast-heating
United Kingdom, Ireland	240 V	Fast-heating
USA	120 V	Slow-heating
USA	240 V	Fast-heating

USA fast heating oven

The fast heating oven requires 240 V/15A power. Do not use 208 V power. Lower voltage causes slow oven ramps and prevents proper temperature control. The power cord supplied with your GC is rated for 250 V/15A, and is a two pole, three wire cord with grounding (type L6-15R/L6-15P). See the figure below.

Canadian installation

When installing a GC in Canada, make sure your GC's power supply circuit meets the following additional requirements:

- The circuit breaker for the branch circuit, which is dedicated to the instrument, must be rated for continuous operation.
- The service box branch circuit must be marked as a "Dedicated Circuit."

Configuring the GC for an MSD

If you are installing an Agilent Mass Selective Detector, you must configure the GC to properly control the heated transfer line.

- 1. Press [Config][Aux], and select [1] if the MSD is installed in the front position or [2] for the back position.
- 2 Press [Mode/Type].
- 3 Use the scroll keys to select MSD as the Aux zone type. Press [Enter].

If you do not configure the Aux zone for MSD, Warning 101, *Invalid heater power* for front (back) detector, inlet, and aux 1(2), will appear on the GC display, and the heated zones will be set to not installed.

Gas requirements

Gases for packed columns

The carrier gas you use depends upon the type of detector and the performance requirements. Table 4 lists gas recommendations for packed column use. In general, makeup gases are not required with packed columns.

Table 4. Gas Recommendations for Packed Columns

Detector	Carrier gas	Comments	Detector, anode purge, or reference gas
Electron Capture	Nitrogen	Maximum sensitivity	Nitrogen
	Argon/Methane	Maximum dynamic range	Argon/Methane
Flame Ionization	Nitrogen	Maximum sensitivity	Hydrogen and air for detector
	Helium	Acceptable alternative	
Flame Photometric	Hydrogen		Hydrogen and air for detector
	Helium		
	Nitrogen		
	Argon		
Nitrogen- Phosphorus	Helium	Optimum performance	Hydrogen and air for detector
	Nitrogen	Acceptable alternative	
Thermal Conductivity	Helium	General use	Reference must be same as carrier
	Hydrogen	Maximum sensitivity (Note A)	
	Nitrogen	Hydrogen detection (Note B)	
	Argon	Maximum hydrogen sensitivity (Note B)	

Note A: Slightly greater sensitivity than helium. Incompatible with some compounds.

Note B: For analysis of hydrogen or helium. Greatly reduces sensitivity for other compounds.

Gases for capillary columns

When used with capillary columns, GC detectors require a separate makeup gas for optimum sensitivity. For each detector and carrier gas, there is a preferred choice for makeup gas. Table 5 lists gas recommendations for capillary columns.

Table 5. Gas Recommendations for Capillary Columns

Detector	Carrier gas	Preferred makeup gas	Second choice	Detector, anode purge, or reference gas
Electron Capture	Hydrogen	Argon/Methane	Nitrogen	Anode purge must be same as makeup
	Helium	Argon/Methane	Nitrogen	
	Nitrogen	Nitrogen	Argon/Methane	
	Argon/Methane	Argon/Methane	Nitrogen	
Flame Ionization	Hydrogen	Nitrogen	Helium	Hydrogen and air for detector
	Helium	Nitrogen	Helium	
	Nitrogen	Nitrogen	Helium	
Flame Photometric	Hydrogen	Nitrogen		Hydrogen and air for detector
	Helium	Nitrogen		
	Nitrogen	Nitrogen		
	Argon	Nitrogen		
Nitrogen- Phosphorus	Helium	Nitrogen	Helium**	Hydrogen and air for detector
	Nitrogen	Nitrogen	Helium**	
Thermal Conductivity	Hydrogen*	Must be same as carrier and reference gas	Must be same as carrier and reference gas	Reference must be same as carrier and makeup
	Helium			
	Nitrogen			

^{*} When using hydrogen with a thermal conductivity detector, vent the detector exhaust to a fume hood or a dedicated exhaust to avoid buildup of hydrogen gas.

Gas purity

Some gas suppliers furnish "instrument" or "chromatographic" purity grades of gas that are specifically intended for chromatographic use. We recommend these grades for use with the GC.

^{**}Helium is not recommended as a makeup gas at flow rates > 5 mL/min. Flow rates above 5 mL/min shorten detector life.

Generally, all gas supplies used should be in the 99.995% to 99.9995% purity range. Only very low levels (≤ 0.5 ppm) of oxygen and total hydrocarbons should be present. Oil-pumped air supplies are not recommended because they may contain large amounts of hydrocarbons.

The addition of high-quality moisture and hydrocarbon traps immediately after the main tank pressure regulator is highly recommended. Refer to the next section, "Assembling the Gas Plumbing," for more information on using traps.

Table 6. Gas Purity Recommendations

Carrier gases and capillary makeup gases		
Helium	99.9995%	
Nitrogen	99.9995%	
Hydrogen	99.9995%	
Argon/Methane	99.9995%	
Detector support gases		
Hydrogen	99.9995%	
Air (dry)	Zero-grade or better	

The gas plumbing

WARNING

All compressed gas cylinders should be securely fastened to an immovable structure or permanent wall. Compressed gases should be stored and handled in accordance with the relevant safety codes.

Gas cylinders should not be located in the path of heated oven exhaust.

To avoid possible eye injury, wear eye protection when using compressed gas.

Follow the general plumbing diagram in when preparing gas supply plumbing.

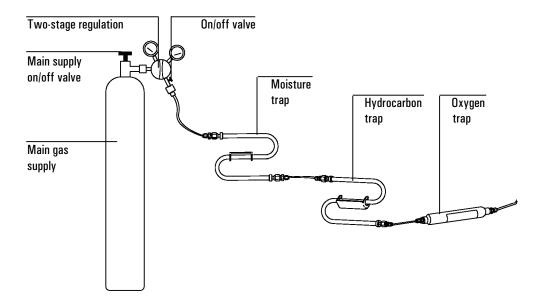


Figure 2. General plumbing diagram

- Two-stage regulators are strongly recommended to eliminate pressure surges. High-quality, stainless-steel diaphragm-type regulators are especially recommended.
- On/off valves mounted on the outlet fitting of the two-stage regulator are not essential but are very useful. Be sure the valves have stainless-steel, packless diaphragms.
- FID, FPD, and NPD detectors require a dedicated air supply. Operation may be affected by pressure pulses in air lines shared with other devices.
- Flow- and pressure-controlling devices require at least 10 psi (138 kPa) pressure differential across them to operate properly. Source pressures and capacities must be high enough to ensure this.
- Auxiliary pressure regulators should be located close to the GC inlet fittings.
 This insures that the supply pressure is measured at the instrument rather than at the source; pressure at the source may be different if the gas supply lines are long or narrow.

Supply tubing for carrier and detector gases

Caution

Do not use methylene chloride or other halogenated solvent to clean tubing that will be used with an electron capture detector. They will cause elevated baselines and detector noise until they are completely flushed out of the system.

Gases should be supplied to the instrument only through preconditioned copper tubing (part no. 5180-4196). Do not use ordinary copper tubing—it contains oils and contaminants.

Caution

Do not use plastic tubing for suppling detector and inlet gases to the GC. It is permeable to oxygen and other contaminants that can damage columns and detectors, and can melt if near hot exhaust or components.

The tubing diameter depends upon the distance between the supply gas and the GC and the total flow rate for the particular gas. One-eighth-inch tubing is adequate when the supply line is less than 15 feet (4.6 m) long.

Use larger diameter tubing (1/4-inch) for distances greater then 15 feet (4.6 m) or when multiple instruments are connected to the same source. You should also use larger diameter tubing if high demand is anticipated (for example, air for an FID).

Be generous when cutting tubing for local supply lines—a coil of flexible tubing between the supply and the instrument lets you move the GC without moving the gas supply. Take this extra length into account when choosing the tubing diameter.

Two-stage pressure regulators

To eliminate pressure surges, use a two-stage regulator with each gas tank. Stainless steel, diaphragm-type regulators are recommended.

Figure 3. Two-stage pressure regulator

The type of regulator you use depends upon gas type and supplier. The Agilent catalog for consumables and supplies contains information to help you identify the correct regulator, as determined by the Compressed Gas Association (CGA). Agilent Technologies offers pressure-regulator kits that contain all the materials needed to install regulators properly.

Pressure regulator-gas supply tubing connections

The pipe-thread connection between the pressure regulator outlet and the fitting to which you connect the gas tubing must be sealed with Teflon tape.

Instrument grade Teflon tape (part no. 0460-1266), from which volatiles have been removed, is recommended for all fittings. Do not use **pipe dope** to seal the threads; it contains volatile materials that will contaminate the tubing.

Traps

Using chromatographic-grade gases insures that the gas in your system is pure. However, for optimum sensitivity, it is highly recommended that you install high-quality traps to remove traces of water or other contaminants. After installing a trap, check the gas supply lines for leaks.

Table 7. Recommended Traps

Description	Part no.
Preconditioned moisture trap: metal casing, s-shaped trap for carrier gas cleanup. Contains Molecular Sieve 5A, 45/60 mesh, and 1/8-inch fittings.	5060-9084
Hydrocarbon trap: metal casing, s-shaped trap filled with 40/60 mesh activated charcoal, and 1/8-inch fittings	5060-9096
Oxygen trap (for carrier and ECD gases): metal casing, and 1/8-inch brass fittings. Oxygen trap cannot be reconditioned.	3150-0414

Moisture in carrier gas damages columns. We recommend a type 5A Molecular Sieve trap after the source regulator and before any other traps.

A hydrocarbon trap removes organics from gases. It should be placed after a molecular sieve trap and before an oxygen trap, if they are present.

An oxygen trap removes 99% of the oxygen from a gas plus traces of water. It should be last in a series of traps. Because trace amounts of oxygen can damage columns and degrade ECD performance, use an oxygen trap with carrier and ECD gases. Do not use it with FID, FPD, or NPD fuel gases.

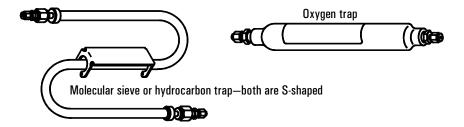


Figure 4. Traps

Cryogenic cooling requirements

Cryogenic cooling allows you to cool the oven below ambient temperature. A solenoid valve introduces liquid coolant, either carbon dioxide (CO_2) or nitrogen (N_2) , to cool the oven to the desired temperature.

 ${\rm CO_2}$ and ${\rm N_2}$ require different hardware. You must replace the entire valve assembly if you want to change coolants. The liquid ${\rm CO_2}$ valve kit is part no. G1565-65510 and the liquid ${\rm N_2}$ kit is part no. G1566-65517.

Choosing a coolant

When selecting a coolant, consider these points:

- The lowest temperature you need to reach
- How frequently you will use cryogenic cooling
- The availability and price of coolant
- The size of the tanks in relation to the size of the laboratory
- Liquid N₂ cools reliably to –80°C
- Liquid CO₂ cools reliably to -40°C

 CO_2 is the choice for *infrequent* cryogenic cooling because it does not evaporate and is less expensive than N_2 . However, a tank of CO_2 contains much less coolant than a tank of N_2 and more CO_2 is used for the same amount of cooling.

Although liquid N_2 evaporates from the tank regardless of frequency of use, N_2 tanks contain more coolant than do CO_2 tanks and therefore may be better for frequent use.

Using carbon dioxide

WARNING

Pressurized liquid CO_2 is a hazardous material. Take precautions to protect personnel from high pressures and low temperatures. CO_2 in high concentrations is toxic to humans; take precautions to prevent hazardous concentrations. Consult your local supplier for recommended safety precautions and delivery system design.

Caution

Liquid CO_2 should not be used as a coolant for temperatures below $-40^{\circ}\mathrm{C}$ because the expanding liquid may form solid CO_2 —dry ice—in the GC oven. If dry ice builds up in the oven, it can seriously damage the GC.

Liquid CO_2 is available in high-pressure tanks containing 50 pounds of liquid. The CO_2 should be free of particulate material, oil, and other contaminants.

Cryogenic cooling requirements

These contaminants could clog the expansion orifice or affect the proper operation of the GC.

Additional requirements for the liquid CO₂ system include:

- The tank must have an internal dip tube or eductor tube to deliver liquid CO₂ instead of gas (see Figure 5).
- The liquid CO₂ must be provided to the GC at a pressure of 700 to 1,000 psi at a temperature of 25°C.
- Use 1/8-inch diameter heavy-wall stainless steel tubing for supply tubing. The tubing should be between 5 to 50 feet long.
- Coil and fasten the ends of the tubing to prevent it from "whipping" if it breaks.
- Do not install a pressure regulator on the CO₂ tank, as vaporization and cooling would occur in the regulator instead of the oven.
- Do not use a padded tank (one to which another gas is added to increase the pressure).

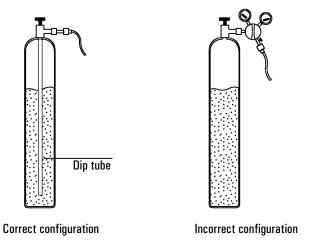


Figure 5. Correct and incorrect liquid CO2 tank configuration

WARNING

Do not use copper tubing or thin-wall stainless steel tubing with liquid CO_2 . Both harden at stress points and may explode.

Using liquid nitrogen

WARNING

Liquid nitrogen is a hazard because of the extremely low temperatures and high pressures that may occur in improperly designed supply systems.

Liquid nitrogen can present an asphyxiant hazard if vaporizing nitrogen displaces oxygen in the air. Consult local suppliers for safety precautions and design information.

Liquid nitrogen is supplied in insulated Dewar tanks. The correct type for cooling purposes is a *low-pressure* Dewar equipped with a dip tube—to deliver liquid rather than gas—and a safety relief valve to prevent pressure build-up. The relief valve is set by the supplier at 20 to 25 psi.

WARNING

If liquid nitrogen is trapped between a closed tank valve and the cryo valve on the GC, tremendous pressure will develop and may cause an explosion. For this reason, keep the delivery valve on the tank open so that the entire system is protected by the pressure relief valve.

To move or replace a tank, close the delivery valve and carefully disconnect the line at either end to let residual nitrogen escape.

Additional requirements for the liquid N_2 system include:

- Nitrogen must be provided to the GC as a liquid at 20 to 30 psi.
- The supply tubing for liquid N₂ must be *insulated*. Foam tubing used for refrigeration and air-conditioning lines is suitable for insulation. Since pressures are low, *insulated* copper tubing is adequate.
- The liquid nitrogen tank should be close (only 5 to 10 feet) to the GC to insure that liquid, not gas, is supplied to the inlet.

Supplying valve actuator air

Some valves use pressurized air for actuation (others are electrically or manually driven). Actuator air must be free of oil, moisture, and particulates. It can be supplied from a dried regulated cylinder, although "house" air supplies or air from a compressor are acceptable.

Most valves require $20\ {\rm to}\ 40\ {\rm psi}\ {\rm of}\ {\rm pressure}\ {\rm to}\ {\rm operate}.$ High-pressure valves may require $65\ {\rm to}\ 70\ {\rm psi}.$

Valves require a dedicated air supply. Do not share valve air supplies with detectors.

See Chapter 9, "Valve Control," in the Agilent 6890 GC Operating Manual, Volume 1 for more valve requirements.

Step 1. Unpacking the GC	28
Step 2. Placing the GC system on the benchtop	29
Step 3. Turning the power on	30
Step 4. Connecting tubing to the gas supply tank	31
Step 5. Attaching traps to the gas supply tubing	32
Step 6. Attaching a SWAGELOK™ Tee to tubing	33
Step 7. Attaching tubing to the inlet manifold	34
Step 8. Attaching tubing to detector manifolds	35
6890 with Electronic Pressure Control	35
6890 with Manual Pressure Control	36
Step 9. Checking for leaks	38
Step 10. Attaching cryogenic liquid supplies	39
Attaching liquid carbon dioxide	39
Attaching liquid nitrogen	40
Step 11. Attaching valve actuator air	42
Step 12. Setting source pressures	44
Step 13. Connecting cables	45
Cable diagrams	52
Analog cable, general use	52
Remote start/stop cable	
Binary-coded decimal cable	54
External event cable	
Step 14. Setting the 7673 Automatic Liquid Sampler switches	56
Step 15. Configuring the GC	
Configuring for the GPIB ChemStation	
Configuring for the INET integrator	
Using the GC with a LAN	

Installation

Step-by-step instructions for installing the ${\it GC}$.

Installation at a glance

Tools and supplies for installation

Make sure you have the tools and supplies you need before starting the installation.

Wrenches	
	One 5/16-inch
	One 3/8-inch
	Two 7/16-inch
	One 9/16-inch
Screwdrivers	
	T-10 Torx screwdriver
	T-20 Torx screwdriver
Tub	ing
	Copper tubing, $1/8$ -inch diameter ($1/4$ -inch diameter if > 15 feet (4.6 m) long)
	Heavy wall, 1/8-inch diameter stainless steel tubing (for liquid ${\rm CO}_2$)
	Insulated copper tubing, 1/4-inch diameter, (for liquid N_2)
	Tubing cutter
Fittings	
	1/8-inch SWAGELOK fittings
	1/4-inch SWAGELOK fittings (for liquid nitrogen and valve actuator air tubing)
	1/8-inch SWAGELOK Tees
	Nuts and ferrules
Tra	os (optional)
	Preconditioned molecular Sieve 5A moisture trap
	Hydrocarbon trap
	Oxygen trap
Other	
	Small, flat-blade screwdriver
	High-quality electronic leak detector
	Insulating material (for liquid nitrogen tubing only)

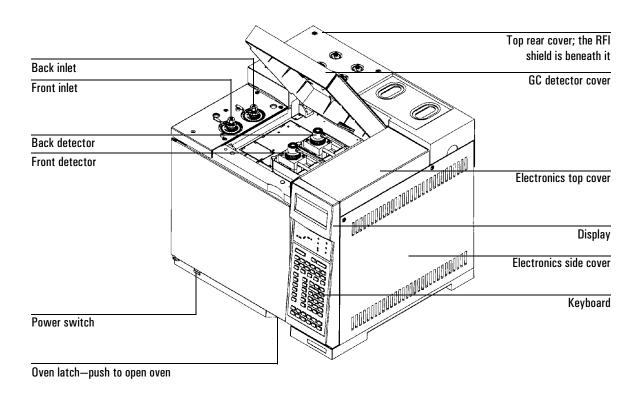


Figure 6. Front view of GC

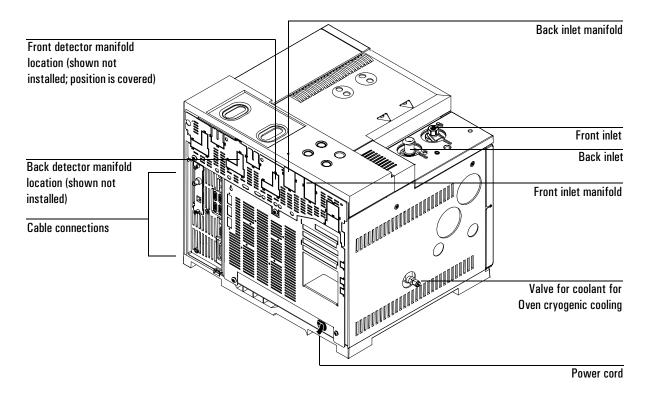


Figure 7. Rear view of GC

Installation

This chapter contains installation procedures for the GC. Most of the installation steps apply to all GC systems—some are optional, such as plumbing for cryogenic cooling and valve actuator air. Instructions are provided for connecting cables from the GC to other instruments in a typical 6890 system. In addition, information about configuring the GC and other instruments is provided.

Most of installation involves plumbing gas to tanks, traps, and manifolds. SWAGELOK™ fittings are used to make leak-tight connections. If you are not sure how to make a SWAGELOK connection, see Appendix A for instruction.

The installation steps assume you need less than 15 feet (4.6 m) of 1/8-inch gas supply tubing for each gas source. For longer installations, use 1/4-inch tubing and appropriate hardware and reducer fittings.

WARNING

Hydrogen is a flammable gas. If hydrogen or any other flammable gas is used, periodic leak tests should be performed. Be sure that the hydrogen supply is off until all connections are made, and insure that the inlet fittings are either connected to a column or capped at all times when hydrogen gas is present in the instrument.

Substituting parts or performing any unauthorized modification to the instrument may result in a safety hazard.

The insulation around the inlets, detectors, valve box, and the insulation cups is made of refractory ceramic fibers (RCF). To avoid inhaling RCF particles, we recommend these safety procedures: ventilate your work area; wear long sleeves, gloves, safety glasses, and a disposable dust/mist respirator; dispose of insulation in a sealed plastic bag; wash your hands with mild soap and cold water after handling RCFs.

Step 1. Unpacking the GC

- 1. Inspect the shipping containers for damage. If a container is damaged or shows signs of stress, notify both the carrier and your local Agilent office.
 - Keep all shipping materials for inspection by the carrier.
- 2. Check the items received against the packing lists. If there are discrepancies, notify your local Agilent office immediately.
 - Keep the shipping containers until you have checked their contents for completeness and verified instrument performance.

Step 2. Placing the GC system on the benchtop

The GC requires a benchtop that can support its weight plus that of other equipment you will use with it. Table 1 on page 7 lists some typical weight data. The area must be free of overhanging obstructions that might interfere with cooling and limit access to the top of the instrument.

WARNING

Be careful when lifting the GC. Because it is heavy, two people should lift it. When moving the GC, be aware that the back is heavier than the front.

Materials needed:

- Oven exhaust deflector, part no. 19247-60510 (optional)
- 1. Remove the GC from its shipping box.
- 2. Place the GC on the benchtop. Make sure gas and power supplies are accessible. Place other pieces of equipment near the GC as appropriate. See Table 1 on page 7 for suggested benchtop layouts.
- 3. If space is limited, attach the oven exhaust deflector to the back of the GC as shown below. The deflector hangs from the exhaust vents on four hooks.

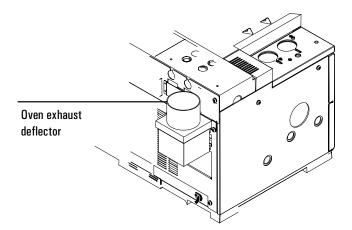


Figure 8. Correct position of the oven exhaust deflector

Step 3. Turning the power on

When you turn the GC on, it runs a series of self-test diagnostics. Run the diagnostics before continuing with the installation to be sure that the instrument electronics are working properly.

1. Verify that the power switch is in the off position.

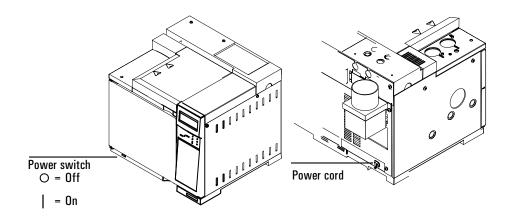


Figure 9. Power switch and power cord locations

- 2. Plug the power cord into the power receptacle. Turn the GC on.
- 3. The self-test diagnostic tests run automatically. To see the pass/fail message, wait for the test to end and press
 [Oven] [Temp] [On]

If the screen displays ${\tt Power}$ on ${\tt successful}, turn the GC off and continue with the installation procedure.$

If you do not see this message, turn the GC off and call Agilent service.

Step 4. Connecting tubing to the gas supply tank

Materials needed

- □ 1/8-inch preconditioned copper tubing
- ☐ Tubing cutter (part no. 8710-1709)
- ☐ 1/8-inch SWAGELOK nuts, front and back ferrules
- ☐ Two 7/16-inch wrenches
- 1. Turn off all gases at the source. Determine the length of tubing you need to reach from the gas supply outlet to the inlet manifold on the GC. Take into account any traps or Tee connections you will need.
- 2. Cut the tubing to length, preferably using a tubing cutter.

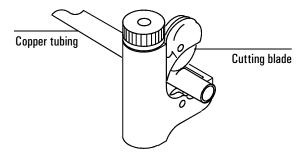


Figure 10. Tubing cutter

3. Connect the tubing to the gas outlet with a SWAGELOK fitting. See Appendix A for information on making SWAGELOK connections.

Step 5. Attaching traps to the gas supply tubing

Materials needed:

- □ 1/8-inch preconditioned copper tubing
- □ Tubing cutter
- ☐ 1/8-inch SWAGELOK fittings, nuts, and ferrules
- ☐ Two 7/16-inch wrenches and one 1/2-inch wrench
- □ Traps
- 1. Determine where you will install the trap in your supply tubing line. See Figure 11 for the recommended trap order.

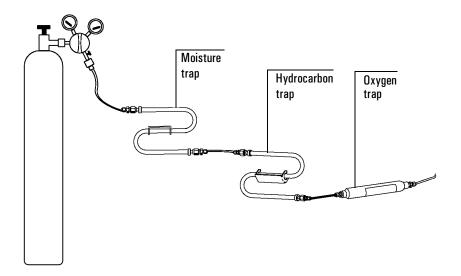


Figure 11. Plumbing diagram

- 2. Cut the tubing to length using a tubing cutter.
- 3. Connect the traps and tubing.

Step 6. Attaching a SWAGELOK™ Tee to tubing

If you need to supply gas to more than one inlet or detector module from a single source, use a SWAGELOK TM Tee near the inlet or detector manifolds.

Materials needed:

- □ 1/8-inch preconditioned copper tubing
- Tubing cutter
- ☐ 1/8-inch SWAGELOK nuts and front and back ferrules
- ☐ 1/8-inch SWAGELOK Tee
- ☐ Two 7/16-inch wrenches
- □ 1/8-inch SWAGELOK cap
- 1. Cut the tubing where you want to install the Tee. Connect the tubing and Tee with a SWAGELOK fitting. See Figure 12.

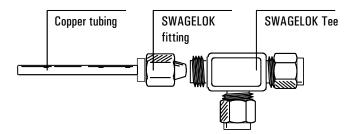
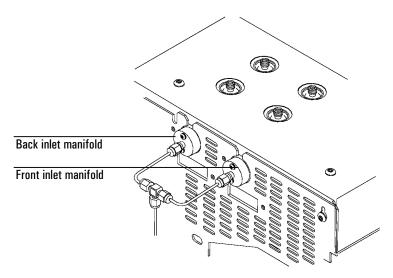


Figure 12. Attaching a SWAGELOK Tee


- 2. Measure the distance from the Tee to the GC inlets and then attach copper tubing to the open Tee ends with SWAGELOK fittings.
- 3. You can install a SWAGELOK cap to the open end of a Tee if you do not plan to connect tubing to it immediately.

Step 7. Attaching tubing to the inlet manifold

If your GC has EPC inlets, attach the tubing for the gas supply to the inlets on the manifolds on the rear of the instrument. Plumbing for non-EPC inlets connects inside the pneumatics carrier on the left side of the GC.

Materials needed:

- □ 1/8-inch preconditioned copper tubing
- ☐ 1/8-inch SWAGELOK nuts and front and back ferrules
- ☐ Two 7/16-inch wrenches
- 1. Turn the carrier gas off at its source.
- 2. Connect the gas supply tubing to the inlet carrier gas manifold with a SWAGELOK nut. See Figure 13.

The GC in this figure has the front and back inlets plumbed with the same carrier gas.

Figure 13. Plumbing the inlet manifolds.

Step 8. Attaching tubing to detector manifolds

The gases you connect to a detector depend on the type of detector. The manifolds clearly indicate what types of gas the detectors require and where you should attach the tubing. See the tables on page 12 and for alternative gases for the detector.

This procedure explains how to install gases to the FID. Gases are plumbed to all the detectors in a similar way.

6890 with Electronic Pressure Control

The detector gas inlet fittings are accessible on the instrument back panel.

- 1. Turn off the gas supplies to be connected at their sources.
- 2. Each detector gas fitting is labeled. Connect the tubing to the appropriate fitting using a SWAGELOK nut.

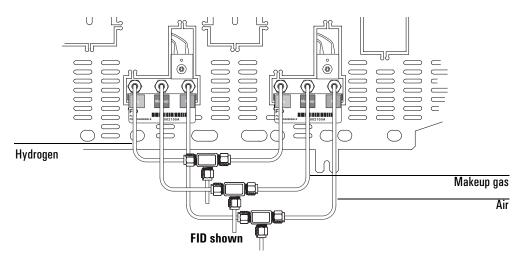


Figure 14. Connecting tubing to an EPC detector

Materials needed:

- □ 1/8-inch preconditioned copper tubing
- ☐ Three 1/8-inch SWAGELOK nuts and back and front ferrules sets
- ☐ Two 7/16-inch wrenches

6890 with Manual Pressure Control

- 1. Turn off the gas supplies to be connected at their sources.
- 2. Remove the top rear cover by lifting it up. Remove the screw securing the RFI cover and remove the RFI cover. See Figure 15.

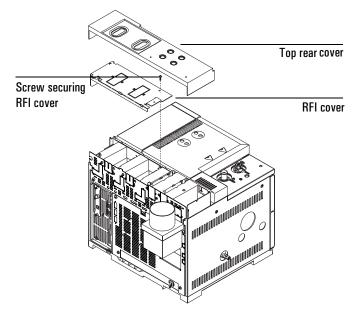


Figure 15. Removing covers

- 3. A slot on the back of the GC, just left of the back inlet manifold, can be used to bend copper tubing to the right angle for connection. Insert the tubing until you feel resistance and bend it upward.
- 4. The FID uses hydrogen, air, and a makeup gas. The inlets are labeled; connect the tubing to the appropriate inlet with a SWAGELOK nut. Connect the makeup gas to the fitting on the regulator. The other gases are connected to the labeled fittings on the manifold. See Figure 16.

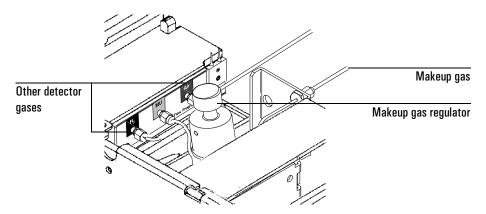


Figure 16. Connecting tubing to a non-EPC detector

Step 9. Checking for leaks

Liquid leak detectors (Snoop is a common one) are not recommended, especially in areas where cleanliness is very important. If you do use leak detection fluid, immediately rinse the fluid off to remove the soapy film.

WARNING

To avoid a potential shock hazard when using liquid detection fluid, turn the GC off and disconnect the main power cord. Be careful not to spill leak solution on electrical leads.

Materials needed:

- ☐ Electronic leak detector (preferred)
- ☐ Leak detection fluid
- 1. Set the carrier gas pressure at the source (usually tank) regulator to approximately 50 psi.
- 2. Set the detector gas pressures to the following:
 - Makeup = 50 psi
 - Hydrogen = 50 psi
 - Air = 50 psi
 - TCD reference gas = 50 psi
- 3. Using the leak detector, check each fitting for leaks.
- 4. Correct leaks by tightening the connections. Retest the connections; continue tightening until all connections are leak-free.
- 5. Turn off the inlet and detector gases at the initial supply.

Step 10. Attaching cryogenic liquid supplies

Cryogenic cooling allows you to operate the GC below ambient temperature. A solenoid valve introduces liquid coolant, either CO_2 or N_2 , at a rate appropriate to cool the oven to the desired temperature.

The choice of coolant depends largely on how frequently you use cryogenic cooling. You cannot use CO_2 and N_2 interchangeably because they require different valve assemblies. For more information on choosing cryogenic coolant, see "Cryogenic cooling requirements" on page 18.

Flared or AN tubing fittings are commonly used to connect the liquid supply tubing to the cryo coolant tank. Check with the supplier of the coolant before plumbing to be sure you have the correct fittings.

Attaching liquid carbon dioxide

1/8-inch SWAGELOK nuts and ferrules

Two 7/16-inch wrenches

WARNING Do not use copper or thin-wall stainless steel tubing! Either presents an explosion hazard. Caution Do not use padded tanks for CO₂ supplies. The cryogenic valve is not designed to handle the higher pressures padded tanks generate. Materials needed: 1/8-inch heavy-wall, stainless steel tubing Tubing cutter

1. Locate the inlet for liquid CO_2 on the **left** side of the GC. Prepare enough tubing to reach from the supply tank to this fitting. See Figure 17.

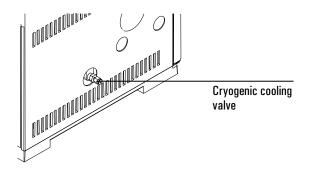


Figure 17. Location of cryogenic cooling valve

- 2. Connect the supply tubing to the liquid ${\rm CO_2}$ tanks outlet with the fitting recommended by the supplier.
- 3. Use a SWAGELOK fitting to connect the supply tubing to the cryogenic valve inlet.

Attaching liquid nitrogen

Materials needed:

- ☐ 1/4-inch insulated copper tubing
- □ Tubing cutter
- □ 1/4-inch SWAGELOK fittings, nuts, and ferrules
- ☐ Two 9/16-inch wrenches
- 1. Position the nitrogen tank as close to the GC as possible to insure that liquid and not gas is delivered to the inlet.
- 2. Locate the inlet for coolant on the left-hand side of the GC. Prepare enough tubing to reach from the supply tank to this outlet. See Figure 18.

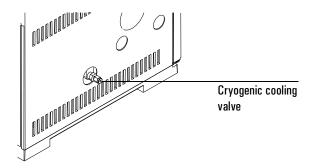


Figure 18. Location of cryogenic cooling valve

- 3. Connect the supply tubing to the liquid N_2 tank outlet with the fitting recommended by the supplier.
- 4. Use a SWAGELOK fitting to connect the supply tubing to the cryogenic valve inlet.

Step 11. Attaching valve actuator air

Valves require air to actuate. Valves should have a dedicated air source; they cannot share detector air supplies.

Valve actuator air is supplied through 1/4-inch plastic tubing. If your GC has valves, the plastic tubing will already be attached to the actuators and will extend from the back of the GC.

Caution

Route the tubing away from the oven exhaust. The hot air will melt the plastic tubing.

Materials needed:

- □ 1/4-inch SWAGELOK fittings and front and back ferrule
- ☐ Two 9/16-inch wrenches

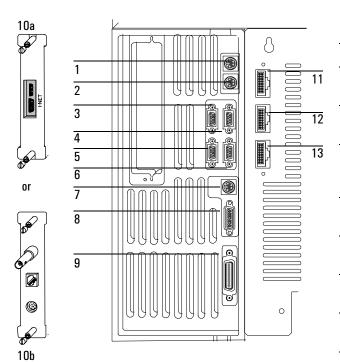
Turn the air off at the source. Use a sharp knife if you need to shorten the tubing. Connect the tubing to the air source using a 1/4-inch SWAGELOK nut. See Figure 19.

Figure 19. Location of valve actuator air tubing

Step 12. Setting source pressures

The pressure set at a tank regulator depends on these factors:

- The pressure needed to achieve the highest flow rate you intend to use.
 The pressure/flow relationship depends on the column or device involved.
 The best way to address this is to begin at a moderate pressure level and adjust upward as needed.
- A pressure difference of about 10 psi (138 kPa) across pressure and flow sensing and controlling devices to enable them to work properly.
 This pressure difference requirement is much the same for all sensors and controllers, including flow controllers and pressure regulators.
- The pressure limit of the weakest part of the supply system.
 Swagelok fittings and copper tubing are more than adequate for the highest gas pressures encountered in gas chromatography.


The pneumatics modules of the GC will withstand over 250 psi pressure, but may not function reliably. We recommend a maximum continuous operating pressure of 170 psi to avoid excessive wear and leaks.

Traps are often the weakest part of the system. They should be labeled, either on the trap itself or in accompanying literature, with a maximum operating pressure. Source pressure must not exceed the *lowest* maximum operating pressure in the supply system.

Suggested starting values of source pressure are:

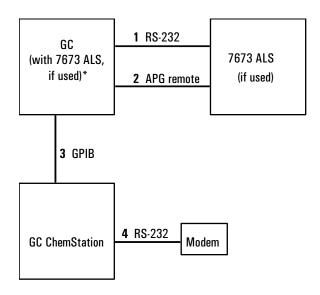
Gas	Use	Source pressure	
Carrier	Packed columns	410 kPa (60 psi)	
	Capillary columns	550 kPa (80 psi)	
Air	Detectors	550 kPa (80 psi)	
Hydrogen	Detectors	410 kPa (60 psi)	

Step 13. Connecting cables

Number	Description
1	Signal 1 — Analog output for integrators or A/D converters
	integrators of A/D converters
2	Signal 2 — Analog output for integrators or A/D converters
3 and 5	Remote start-stop for synchronizing the GC, integrators, automatic samplers, Agilent MSD, and other GCs
4	Modem — RS-232 for modem, computer, or controller devices
6	Sampler — Control for 7673 Automatic Liquid Sampler*
7	External event contact closures and 24-volt outputs for valve control
8	BCD input for stream selection valves, headspace sampler, or other device
9	GPIB for Agilent ChemStation and/or MSD
10a	Optional MIO INET card for 3396B/C or 3397 integrators
10b	Optional MIO LAN card
11	Sampler G2613A Automatic Liquid Sampler, default front injector
12	Sampler G2613A Automatic Liquid Sampler, default back injector
13	Sampler G2614A tray

^{*} Not used if the GC has an internal controller for the 7683 ALS

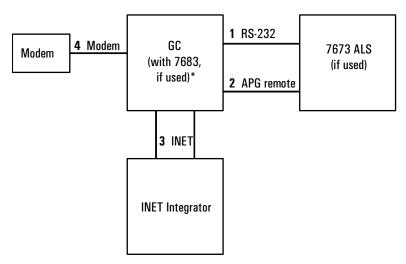
Figure 20. Overview of cable connections on the back of the GC


The GC has an extensive set of communication tools:

- 1, 2 Analog signal outputs Two channels of analog data output for use with external signal processors. Each analog output has three voltage ranges.
- **3,5 Remote** Two remote ports (3,6) that can be used to synchronize up to ten instruments.
- 4 Modem/RS-232C For use with modems, computers, and other controller devices.
- **6 Sampler** An RS-232C port (5) dedicated to control the 7673 Automatic Liquid Sampler.

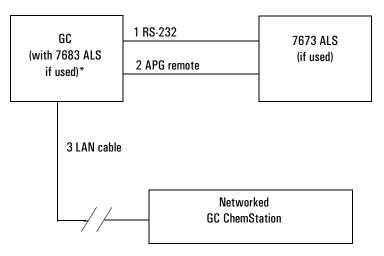
Note: The 6890 can use **either** 7673 or 7683 Automatic Liquid Samplers. If an G2612A ALS Interface board is installed to control an 7683 ALS, this connector is non-functional.

- **7 External event control** Two passive contact closures and two 24-volt control outputs for controlling external devices. Connected to valve drivers 5 through 8 on the GC.
- **8 BCD (binary-coded decimal) inputs** Reads the position of a stream selection valve or other device. Consists of eight passive inputs that sense open/closed contacts. Does not provide BCD output for use with data handling devices.
- **9 GPIB** Connects the GC to an Agilent ChemStation. This is Agilent's implementation of the IEEE 488 standard for data communications (high-speed data transfer over a short distance).
- **10a INET** Instrument Network, a proprietary communications scheme that connects an Agilent integrator and various Agilent analytical instruments to your GC.
- 10b LAN The LAN interface card connects the GC to a networked host computer.
- 11, 12 Sampler Power and communications for an G2613A injector.
- 13 Sampler Power and communications for an G2614A tray.


There are many system configurations possible with the GC. The figures show two common configurations. See Table 8 and Table 9 for cabling requirements for other combinations. See Figure 21.

^{*} The 7683 controller is internal to the 6890 Plus GC. The G2613A Injector and the 2614 tray plug directly into the GC.

Figure 21. GC—GPIB GC ChemStation—GC Automatic Liquid Sampler


Number	Part no. and description
1	G1530-60600, RS-232 cable, 9-pin female/9-pin female
2	G1530-60930, Remote start/stop cable, 2-m, 9-pin male/9-pin male
3	10833B, 2-m GPIB cable
4	G1530-61120, RS-232/modem cable or 24540-80012, RS-232/modem cable

^{*} The 7683 controller is internal to the 6890 Plus GC. The G2613A Injector and the 2614 tray plug directly into the GC.

Figure 22. GC 3396B/C INET integrator—GC Automatic Liquid Sampler—Modem

Number	Part no. and description
1	G1530-60600, 2-m RS-232 cable, 9-pin female/9-pin female
2	G1530-60930, 2-m APG remote cable, 9-pin male/9-pin male, start-stop function
3	Two 82167-60003, 5-m INET cables
4	G1530-61120, RS-232/Modem cable, 9-pin female/9-pin male OR 24540-80012, RS-232/Modem cable 9-pin female/25-pin male

^{*} The 7683 controller is internal to the 6890 Plus GC. The G2613A Injector and the 2614 tray plug directly into the GC.

Figure 23. GC—networked GC ChemStation—GC Automatic Liquid Sampler

Number	Part no. and description	
1	G1530-60600, RS-232 cable, 9-pin female/9-pin female	
2	G1530-60930, Remote start/stop cable, 2-m, 9-pin male/9-pin male	
3	92268 B, LAN cable, Ether twist 4 pair	

Table 8. Cabling Requirements

Instrument Connected to	Required Cable(s)	Part no.
7683 Automatic Liquid Sampler	Injector cable is integral tray cable	G2614-60610
7673 Automatic Liquid Sampler	RS 232, 9-pin female/9-pin male Remote, 2-m 9-pin male/9-pin female	G1530-60600 G1530-60930
GC ChemStation	GPIB, 2 m	10833B
7694 Headspace Sampler	Remote, 9-pin male/6-pin connector	G1290-60570
7695 Purge and Trap Sampler	Remote, 25-pin male/9-pin male	G1500-60820
INET Integrator. Use two cables for an INET loop	Two 5-m INET cables	82167-60003
3395A Integrator	Remote, 9 pin/15 pin Analog, 2 m, 6 pin	03396-61020 G1530-60570
3395B Integrator	Remote, 9 pin/15 pin Analog, 2 m, 6 pin	03396-61010 G1530-60570
3396B Integrator	Remote, 9 pin/15 pin Analog, 2 m, 6 pin	03396-61020 G1530-60570
3396C/3397 Integrator	Remote, 9 pin/15 pin Analog, 2 m, 6 pin	03396-61010 G1530-60570
Non-Agilent Integrator	Analog, 2 m, 6 pin	G1530-60560
35900 C/D/E A/D Converter	Remote, 9-pin male/9-pin male Analog, 2 m, 6 pin	G1530-60930 G1530-60570
Mass Selective Detector	Remote, 2-m, 9-pin male/9-pin male	G1530-60930
Modem	Modem, 9-pin female/9-pin male, or Modem, 9-pin female/25-pin male	G1530-61120, or 24540-80012
Non-Agilent data system	General use remote, 9-pin male/spade lugs External event, 8-pin/spade lugs	35900-60670 (2 m), 35900-60920 (5 m), 35900-60930 (0.5 m) G1530-60590
Non-Agilent instrument, unspecified	External event, 8 pin/spade lugs	G1530-60590
Stream selection valves Gas sampling valves	See documentation accompanying the valve	
LAN	Ether Twist 4 pair	92268B

Table 9. Cabling for Other Instruments in a 6890 System

Instrument 1	Instrument 2	Type of cable	Part no.
Mass Selective Detector	GC ChemStation	GPIB	10833A
7673 GC Automatic Liquid Sampler	Non-Agilent data system	BCD	G1530-60630 18594-60520
7673 GC Automatic Liquid Sampler	3395A Integrator 3396B Integrator	BCD	03396-60560
7673 GC Automatic Liquid Sampler	3395B Integrator 3396C Integrator	BCD	03396-60560
7673 GC Automatic Liquid Sampler	35900 C/D/E A/D Converter	BCD	35900-60850
GC ChemStation	Modem	RS-232	24540-80012, or G1530-61120
7694 Headspace Sampler	GC ChemStation	RS-232, 9-pin female/ 9-pin male	24542U
7694 Headspace Sampler	INET Integrator	RS-232, 15-pin male/ 9-pin female	03396-60530
7694 Headspace Sampler	Non-INET Integrator	RS-232, 15-pin male/ 9-pin female	03396-60530
7694 Headspace Sampler	Unspecified, non-Agilent instrument	Binary-coded decimal cable	03396-60570
		Splitter ("Y") cable for APG remote	G1530-61200

Cable diagrams

If you connect the GC to a non-Agilent instrument or to the 35900 A-to-D Converter, you must know the function of each wire in the cable. See Table 10.

Analog cable, general use

The GC uses the general use analog cable to communicate with a non-Agilent integrator. The general use cable is also used with non-Agilent detectors. See Figure 24.

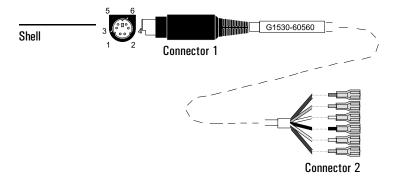


Figure 24. Analog cable, general use (part no. G1530-60560)

Table 10. Analog Cable, General Use Output Connections

Connector 1	Connector 2—Quick connects	Signal
1	Brown or violet	0 to 1 mV (-)
2	White	0 to 1 V, 0 to 10 V(-)
3	Red	0 to 1 mV (+)
4	Black	1 V (+)
6	Blue	10 V (+)
Shell	Orange	Ground

Remote start/stop cable

Two ports are available to remotely start and stop instruments in a loop. For example, you might have an integrator, automatic sampler, and a gas chromatograph connected with Remote cables. You can synchronize a maximum of ten instruments using Remote cables. See Figure 25 and Table 11.

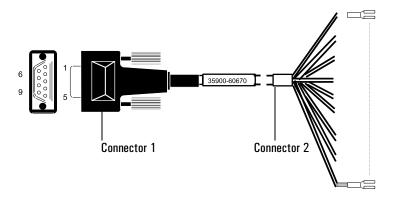


Figure 25. Remote start/stop cable pin-outs, general use (part no. 35900-60670)

Table 11. Remote Start/Stop Connections

Connector 1 9 pin male	Connector 2 spade lugs	Signal name
1	Black	GND
2	White	Prepare
3	Red	Start
4	Green	Shut down
5	Brown	Reserved
6	Blue	Power on
7	Orange	Ready
8	Yellow	Stop
9	Violet	Start request

Binary-coded decimal cable

The BCD cable contains eight passive inputs that sense total binary-coded decimal levels. See Figure 26 and Table 12.

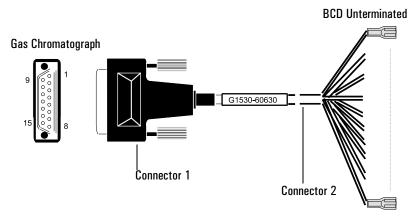


Figure 26. BCD input cable, part no. G1530-60630

Table 12. BCD Input Connections

Connector 1 15 pin male	Color	Signal name	Logic
1	Black	LS digit 0 (1)	Low true
2	Brown	LS digit 1 (2)	Low true
3	Red	LS digit 2 (4)	Low true
4	Orange	LS digit 3 (8)	Low true
5 through 7		unused	Low true
8	Gray	ground	Low true
9 through 11		unused	Low true
12	Yellow	MS digit 0 (1)	Low true
13	Green	MS digit 1 (2)	Low true
14	Blue	MS digit 2 (4)	Low true
15	Violet	MS digit 3 (8)	Low true

External event cable

Two passive relay contact closures and two 24-volt control outputs are available for controlling external devices. Devices connected to the passive contact closures must be connected to their own power source. See Figure 27 and Table 13.

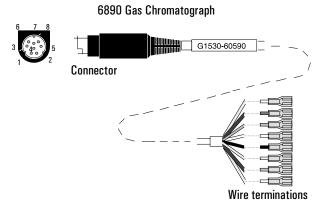


Figure 27. External event cable (part no. G1530-60590)

Table 13. External Event Connections

Connector	Signal name	Maximum rating	Wire terminations	Corresponds to valve#
24 volt cont	rol output			
1	24 volt output 1	75 mA output	Yellow	5
2	24 volt output 2	75 mA output	Black	6
3	Ground		Red	
4	Ground		White	
Relay contac	ct closures (normally	open)		
5	Contact closure 1	48V AC/DC, 250 mA	Orange	7
6	Contact closure 1		Green	7
7	Contact closure 2	48 V AC/DC, 250 mA	Brown or violet	8
8	Contact closure 2		Blue	8

Step 14. Setting the 7673 Automatic Liquid Sampler switches

If you are installing an 7673 Automatic Liquid Sampler (ALS), there are a series of switches on the back panel of the controller that must be set properly.

Materials needed:

• A tool with a small point to move the switches (for example, a pencil with a sharp point)

Locate the switches on the back of the ALS controller. Set the first two switches on the left to "1". Set all the other switches to "0". See Figure 28.

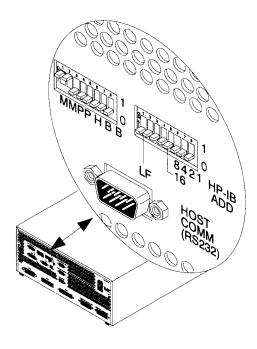


Figure 28. 7673 ALS switch location and correct configuration

Step 15. Configuring the GC

For some operations, you must configure the GC to communicate correctly with another instrument. These operations require configuration:

- Using an Agilent ChemStation with GPIB communications.
- Using an INET integrator.

ChemStation and modem configurations are done at the GC keyboard. The INET integrator is configured at the integrator keyboard.

Configuring for the Agilent GPIB ChemStation

The GC and Agilent GPIB ChemStation communicate via an GPIB cable (part no. 10833B). Connect the cable before configuring.

Each instrument connected to the ChemStation needs an address. There are 31 addresses available (0 to 30). To assign an address to your GC:

1. Press [Options]

```
OPTIONS
Calibration
Communication
Keyboard & Display
Diagnostics

COMMUNICATION SEIPTS
HPIB address
5 < 3 Enter a number between 0 and 30 and press [Enter]
```

You can connect a maximum of 15 devices with GPIB cables. You are limited to 2 meters of cable for each device connected up to a maximum of 20 meters. If you have three devices connected with GPIB cables, you can only use a total of six meters of cable. This can be in any combination; it's the total length that matters. Do not stack more than three connector blocks on top of one another.

Configuring for the INET integrator

If you are using an INET integrator, you need to configure the signal range and the GC's INET address from the integrator keyboard. You must first connect the GC and integrator with the two INET cables.

When an INET connection is being used, the GC sends digital data and methods setpoints to the integrator. Although the GC produces data that is 37 points wide, the integrator can only accept 32 points of data. Because of this, you must determine and configure the data range.

Range values can be between 0 and 5. A range of 0 gives the integrator the greatest sensitivity. Range values are actually powers of 2 that the signal is attenuated by, so range 1 is half as sensitive as 0, and range 4 is 1/16 as sensitive as 0. Five, the least sensitive range, is the default.

If you are using a 3396 Series III, or 3397 INET Series integrator, refer to the manual for information on assigning the GC address and setting the range. If you are using an earlier version of the INET integrator, use the following procedure (the computer font indicates text you type at the keyboard):

1. Verify the INET address of the GC. At the integrator keyboard, press:

```
[I] [N] [Enter]
```

Usually, the address is 8.

2. Use the OP() 6 dialog to configure the integrator.

```
Press: [OP ()] [6] [Enter].
```

3. Enter the following dialog at the prompt:

```
8 (or the GC INET address you received in step 1)
SIG1RANGE n [Enter] (n = the value of the range)
SIG2RANGE n [Enter] (if you have a 3396B integrator)
[BREAK] (to exit the dialog)
```

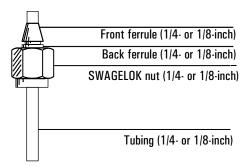
Using the GC with a LAN

If you purchased your GC with Option 500, your LAN communications card is already installed. If you purchased accessory G2335A, you will need to install your LAN card as described in the instructions provided with it.

Once the card is installed, contact your LAN administrator to assign it an IP address.

Appendix

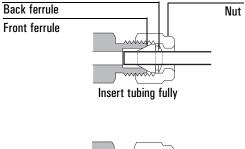
Making SWAGELOK Connections

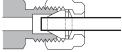

Step-by-step instructions for making SWAGELOK connections between gas supply tubing and components of the GC system.

Appendix—SWAGELOK Connections

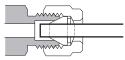

The gas supply tubing is attached with SWAGELOK fittings. If you are not familiar with making SWAGELOK connections, review the following procedure. The procedure explains how to connect tubing to a fitting, such as inlet and detector manifolds or the gas supply tank.

Materials needed:

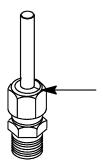

- □ 1/8-inch (or 1/4-inch, if used) preconditioned copper tubing
- □ 1/8-inch (or 1/4-inch, if used) SWAGELOK nuts, and front and back ferrules
- ☐ Two 7/16-inch wrenches
- 1. Attach a 1/8-inch SWAGELOK nut, back ferrule, and front ferrule to the tubing.



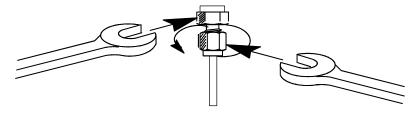
2. Make sure that the front ferrule is touching the inlet, and then slide the SWAGELOK nut over the ferrule and tighten it finger-tight.



3. Push the tube fully into the female fitting, then with draw it approximately 1–2 mm.



Withdraw 1-2 mm



Tighten nut

4. Mark the SWAGELOK fitting with a pencil line.

5. If you are using 1/8-inch SWAGELOK fittings, while holding the fitting steady with the other 7/16-inch wrench, tighten the fitting 3/4 of a turn. If you are using 1/4-inch fittings, tighten them 1 1/4 turn.

Tightening SWAGELOK nuts by this procedure provides a leak-proof, torque-free seal at all tubing connections.

A	\mathbf{C}
Activated charcoal trap	Cables
Description, 18	03396-60530, RS-232, 51
Installation, 32	03396-60570, BCD, 51
Actuator air	03396-61010, Remote, 50
Plumbing, 42	03396-61020, Remote, 50
Requirements, 22	10833A,GPIB, 51
Addresses	10833B, GPIB, 47
GPIB, assigning, 57	24540-80012, Modem, 50
INET, assigning, 58	24540-80012, RS-232, 51
Analog	24540-80012, RS-232/modem, 47, 48
Cable G1530-60560, 52	24542U, RS-232, 51
Cable G1530-60560, connections identified, 52	35900-60670, Remote, diagram, 53
Cable G1530-60570, 50	8120-3446,GPIB, 50
Analog output, 46	82167-60003, INET, 48, 50
Analog-to-Digital Converter, 35900, 7, 51	92268B, LAN, 49, 50
Analog-to-Digital Converter, 35900, 50	BCD, 51
APG remote cable	G1530-60560, Analog, diagram, 52
G1530-60930, 48	G1530-60570, Analog, 50
APG remote communications	G1530-60590, External event, 50, 55
see Remote start/stop, 46	G1530-60590, External event, diagram, 55
Automatic Liquid Sampler	G1530-60600, RS-232, 47, 48, 49, 50
Communication with Analog-to-Digital	G1530-60630, BCD, 54
converter, 51	G1530-60930, APG remote, 47, 49
Communication with GC, 50, 56	G1530-60930, APG remote cable, 48
Communication with Integrator, 51	G1530-60930, Remote, 50
Communication with non-Agilent data	G1530-61120, Modem, 50
system, 51	G1530-61120, RS-232, 51
Communications port, 46	G1530-61120, RS-232/modem, 47, 48
Setting switches, 56	G1530-61200, APG, Splitter, 51
Specifications, 7	G2614A-60610, 2619A tray cable, 50
	NonGC cabling requirements, 51
n	Requirements
В	GC communications, 50
BCD	Carbon dioxide
Cable 03396-60570, 51	For cryogenic cooling, 19
Communications port, 46	Plumbing to GC, 39
BCD cables	Carrier gas
G1530-60630, 54	Capillary columns, 13
Binary coded decimal, 46	Packed columns, 12
	Plumbing to inlet manifold, 34

ChemStation	Carbon dioxide, 19
Communication with Automatic Liquid	Nitrogen, 21
Sampler, 51	Plumbing liquid carbon dioxide, 39
Communication with GC, 46, 50	Plumbing liquid nitrogen, 40
Communication with Mass Selective Detector, 51	Requirements, 18
Communication with modem, 51	
Configuring GC for use with, 57	D
Specifications, 7	Data system, non-Agilent
Communications	Communication with Automatic Liquid
Analog, 46	Sampler, 51
Automatic Liquid Sampler, 46	Data system, nonAgilent
BCD, 46	Communication with GC, 50
External event control, 46	Detector
GPIB, 46	Gas recommendations, 11, 12
INET, 46	Plumbing gas to manifold, 35
LAN, 46	
Modem, 46	75
Remote start/stop, 46	${f E}$
RS-232, 46	Electrical requirements
Computer, non-Agilent	\mathbf{Cord} , 9
Communication with GC, 50	Maximum consumption, 9
Computer, nonAgilent	Oven type, 9
Cable 35900-60670 (2 m), 50	Voltages, 9
Cable 35900-60920 (5 m), 50	Electron Capture Detector
Cable 35900-60930 (0.5 m), 50	Attaching gas plumbing, 35
Communication with Automatic Liquid	Gas recommendations, 12, 13
Sampler, 51	Environmental requirements, GC
Specifications, 7	Humidity, 3
Configuring	Temperature, 3
GC, for use with ChemStation, 57	EPC inet
INET integrator, 58	Attaching tubing to, 35
Configuring GC for use with	EPC inlet
LAN, 58	Attaching tubing to, 34
Consumables	Gas recommendations, 11, 12, 13
List, 24	External event
Cooling requirements	Cable G1530-60590, connections identified, 55
GC, 3	External events
Copper tubing	Cable G1530-60590, 50, 55
Plumbing for cryo cooling, 40	Communications port, 46
Plumbing to detector manifold, 35	
Plumbing to gas supply, 31	F
Plumbing to inlet manifold, 34	_
Recommendations, 16	Fast heating oven, 7
Cryogenic cooling	Fittings Connecting to tubing, 60
-	ԾՈւնենայել որ լույացը, 60

Leak checking, 38	Dimensions, 7
Flame Ionization Detector	Electrical requirements, 9
Attaching gas plumbing, 35	Electrical specifications, 7
Gas recommendations, 12	Grounding, 8
Flame Photometer Detector	Heat specifications, 7
Attaching gas plumbing, 35	Humidity range, 3
Flame Photometric Detector	Line voltage, 8
Gas recommendations, 12, 13	On/Off switch, 30
	Space requirement, 4
	Temperature range, 3
\mathbf{G}	Venting exhaust, 4
Gas plumbing	Venting noxious gases, 4
Attaching traps to, 32	Weight, 7
Diagram, 32	GC Automatic Liquid Sampler, 7
Overview, 14	GC system
Pipe-thread connections, 17	Cabling, 45, 50, 51
Recommendations, 14	Communication between instruments, 45, 51
Two-stage pressure regulator, 16	Component specifications, 7
Gas recommendations	Configurations, 6
Capillary columns, 12	Diagrams, 48, 49
Detectors, 11, 12	GPIB, 46, 47, 50, 51, 57
Packed columns, 11	Grounding
Purity, 13	GC, 8
Gas sampling valve	,
Communication with GC, 50	
Gas supply	\mathbf{H}
Connecting tubing to, 31	Headspace Sampler, 7694
Plumbing, 31	Communication with ChemStation, 51
Purity recommendations, 13	Communication with Integrator, 51
Gas supply tubing	Communication with unspecified non-
Attaching a Tee, 33	Agilent instrument, 51
Connecting to detector manifold, 35	Specifications, 7
Connecting to gas supply, 31	Humidity
Connecting to inlet manifold, 34	Operating ranges, 3
Determining length, 31	Hydrocarbon trap
Diameter, 16	Description, 18
Leak checking, 38	Installation, 32
Recommendations, 16	
GC	т
Benchtop requirements, 4	I
Communications with other instruments,	INET
overview, 46	Cable 82167-60003, 50
Configuring for LAN, 58	Communications port, 46
Configuring for use with ChemStation, 57	INET cables
Configuring INET integrator for use with, 58	82167-60003, 48
Cooling requirements, 3	INET integrator

Assigning GC address, 58	L
Assigning signal, 58	LAN
Communication with GC, 50	Cable, 50
Communication with Headspace Sampler, 51	Configuring the GC, 58
Configuring for use with GC, 58	LaserJet
Inlet manifold	Specifications, 7
Plumbing carrier gas to, 34	Leaks
Inlet, EPC	Checking for, 38
Gas recommendations, 11, 12, 13	Line voltage
Inlet, nonEPC	
Gas recommendations, 11, 12, 13	Requirements, 8
Installation procedures	Requirements by country, 10
Attaching liquid carbon dioxide tubing, 39	Liquid carbon dioxide
Attaching liquid nitrogen tubing, 40	Plumbing to GC, 39
Attaching the oven exhaust deflector, 29	Requirements for cryogenic cooling, 19
Attaching traps, 32	Liquid nitrogen
Attaching tubing to detector manifold, 35	Plumbing to the GC, 40
Attaching tubing to detector manifold, 34	Requirements for cryogenic cooling, 21
Attaching valve actuator air, 42	
Configuring the GC, 57	M
Connecting cables, 45	
Connecting tubing to gas supply, 31	Mass Selective Detector
Placing the system on the benchtop, 29	Communication with ChemStation, 51
	Communication with GC, 50
Plumbing cryogenic liquid Carbon dioxide, 39	Specifications, 7
	Modem
Nitrogen, 40	Cable 24540-80012, 47
Plumbing detector manifold, 35	Cable G1530-61120, 47
Plumbing inlet manifold, 34	Communication with ChemStation, 51
Plumbing valve actuator air, 42	Communications port, 46
Self-test diagnostics, 30	Modem cables
Unpacking the GC, 28	24540-80012, 48, 50
Instrument, unspecified non-Agilent	G1530-61120, 48, 50
Communication with GC, 50	Moisture trap
Instrument, unspecified nonAgilent	Description, 18
Communication with Headspace Sampler, 51	Installation, 32
Integrator	Molecular sieve trap
Communication with Automatic Liquid	Description, 18
Sampler, 51	Installation, 32
Communication with GC, 50	
Communication with Headspace Sampler, 51	N
Specifications, 7	
Integrator, non-Agilent, 50	Nitrogen
	Plumbing to GC, 40
	Requirements for cryogenic cooling, 21
	Nitrogen-Phosphorus Detector, 12, 13, 35
	NonEPC inlet

Gas recommendations, 11, 12, 13	Cable 35900-60670, 53
	Cable 35900-60670, connections identified, 53
0	Cable G1530-60930, 47, 49, 50
0	Communication port, 46
Oven	General use cable 35900-60670 (2 m), 50
Power requirements, 7	General use cable 35900-60920 (5 m), 50
Oven exhaust deflector	General use cable 35900-60930 (0.5 m), 50
Attaching to GC, 29	RS-232, 46, 47, 48, 49, 50, 51
Using, 4	RS-232 cables, 48
Overview	
Cabling requirements, 50, 51	C
Front of instrument, illustration, 25	S
GC system components, 7	Self-test diagnostics, 30
Rear of instrument, illustration, 26	Setting switches
Supplies for installation, 24	GC ALS, 56
Tools for installation, 24	Space requirements
Oxygen trap	GC, 4
Description, 18	GC system configurations, 4
Installation, 32	Specifications
	Analog-to-Digital Converter, 35900, 7
P	ChemStation, 7
-	Fast-heating oven, 7
Personal computer	GC, 7
Specifications, 7	Headspace Sampler, 7694, 7
Pipe-thread connections, 17	Integrator, 3395 and 3396, 7
Power cord	Mass Selective Detector, 5972A, 7
Requirements, 9	Personal Computer, 7
Power requirements	Regular oven, 7
Cord, 9	Vectra, 7
Maximum consumption, 9	Stainless steel tubing
Oven type, 9	Plumbing for cryo cooling, 39
Voltages, 9	Stream selection valves
Pressure regulators	Communication with GC, 50
Connecting to gas tubing, 17	Supplies
Pipe-thread connections, 17	List, 24
Recommendations, 16	Obtaining, 3
Printers	SWAGELOK connection, 33
Specifications, 7	SWAGELOK fittings
	Connecting to tubing, 60
R	Leak checking, 38
Regular oven	Tees, attaching, 33
Power requirements, 7	Switches
Remote start/stop	Setting of 7673 GC ALS, 56
Cable 03396-61010, 50	Setting of GC ALS, 56
Cable 03396-61020, 50	System
Capic 00050-01020, 50	Components specifications, 7

System configurations	Voltage
Overview, 6	Requirements by country, 10
${f T}$	\mathbf{W}
Teflon tape, 17	Weight
Temperature	GC, 4
Operating ranges, 3	GC system components, 4
Thermal Conductivity Detector	Table of weights, 7
Attaching gas plumbing, 35	9
Gas recommendations, 12, 13	
Tools	
List, 24	
Obtaining, 3	
Traps	
Activated charcoal, 18	
Connecting to gas tubing, 32	
Hydrocarbon trap, 18	
Moisture, 18	
Molecular sieve, 18	
Overview, 17	
Oxygen, 18	
Split Vent, 4	
Tubing, 33	
For gas supplies, 16	
Two-stage pressure regulators, 16	
${f V}$	
Valve actuator air	
Plumbing, 42	
Requirements, 22	
Valves	
Communications with GC, 50	
Vectra, 7	
Communication with GC, 46, 50	
Communication with Headspace Sampler, 51	
Communication with Mass Selective	
Detector, 51	
Communication with modem, 51	
Specifications, 7	
Venting requirements	
Detectors, 4	
Oven, 4	
Oven exhaust reflector, 4	
Split/splitless inlet, 4	